Corrections: Order Estimation in Arma-Models by Lagrangian Multiplier Tests
نویسندگان
چکیده
منابع مشابه
Estimation in ARMA models based on signed ranks
In this paper we develop an asymptotic theory for estimation based on signed ranks in the ARMA model when the innovation density is symmetrical. We provide two classes of estimators and we establish their asymptotic normality with the help of the asymptotic properties for serial signed rank statistics. Finally, we compare our procedure to the one of least-squares, and we illustrate the performa...
متن کاملRobust Estimation for Arma Models
This paper introduces a new class of robust estimates for ARMA models. They are M-estimates, but the residuals are computed so the effect of one outlier is limited to the period where it occurs. These estimates are closely related to those based on a robust filter, but they have two important advantages: they are consistent and the asymptotic theory is tractable. We perform a Monte Carlo where ...
متن کاملR-estimation for Arma Models
This paper is devoted to the R-estimation problem for the parameter of a stationary ARMA model. The asymptotic uniform linearity of a suitable vector of rank statistics leads to the asymptotic normality of √ n-consistent R-estimates resulting from the minimization of the norm of this vector. By using a discretized √ n-consistent preliminary estimate, we construct a new class of one-step R-estim...
متن کاملEstimation of AR and ARMA models by stochastic complexity
Abstract: In this paper the stochastic complexity criterion is applied to estimation of the order in AR and ARMA models. The power of the criterion for short strings is illustrated by simulations. It requires an integral of the square root of Fisher information, which is done by Monte Carlo technique. The stochastic complexity, which is the negative logarithm of the Normalized Maximum Likelihoo...
متن کاملOptimal Estimation of Multivariate ARMA Models
Autoregressive moving average (ARMA) models are a fundamental tool in time series analysis that offer intuitive modeling capability and efficient predictors. Unfortunately, the lack of globally optimal parameter estimation strategies for these models remains a problem: application studies often adopt the simpler autoregressive model that can be easily estimated by maximizing (a posteriori) like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1984
ISSN: 0090-5364
DOI: 10.1214/aos/1176346529